

Pleural fluid myths and elusive effusions

James Goldring

Pleural fluid appearances

What proportion of transudates are turbid?

- 9%

What proportion of MPE are bloody?

- 11%

(47% of bloody effusions are MPE)

Chylothorax

Chylothorax is milky?

- Serous: 26%, serosanguinous 26%, bloody 3%
- 14% have triglycerides $<1.2\text{mmol/L}$
- Depends what you eat
- If in doubt check for chylomicrons with lipoprotein electrophoresis

Maldonado F et al. Pleural fluid characteristics of chylothorax. *Mayo Clin Proc* 2009;84:129

Optimal quantity (mls) for cytology

- There is no point in sending >50mls for cytology?

50ml vs the remainder 55% regardless

Abouzgheib W et al. A prospective study of the volume of pleural fluid required for accurate diagnosis of malignant pleural effusion. *Chest* 2009;135:999

Depends on what your lab does with it:

10mls 49% 60mls 63% 150mls 69% (if doing **cell block** as well as smear/cytospin)

Swiderek J et al. Prospective study to determine the volume of pleural fluid required to diagnose malignancy. *Chest* 2010;137:68

Delays in sending sample

- Pleural fluid should be analysed asap?

Cytology (incl IHC, genotyping) 14d refrigerated

Manosca F et al. Diagnostic effects of prolonged storage on fresh effusion samples. *Diagn. Cytopathol.* 2007;35:6

Glucose 24hrs

Rahman NM et al. Clinically important factors influencing the diagnostic measurement of pleural fluid pH and glucose. *Am. J. Respir. Crit. Care Med.* 2008;178:483

Cell differential 1d

Conner BD et al. Variations in pleural fluid WBC count and differential counts with different sample containers and different methods. *Chest* 2003;123:1181

pH 4hrs

Rahman NM (2008)

Light's criteria

- Light's criteria is the best method for separating transudates from exudates?

Light's criteria 98% sensitive, 74% specific

Requires serum sampling (up to 5d later)

Jenkinson F et al. Biochemical analysis of pleural and ascitic fluid: effect of sample timing on interpretation of results. *Ann. Clin. Biochem.* 2007;44:471

Single tests improve specificity (pleural protein >30g/L 92% sensitive, 83% specific)

Heffner JE et al. Diagnostic value of tests that discriminate between exudative and transudative pleural effusions. *Chest* 1997; 111:970

Misclassification of transudates

- 30% of CCF related effusions & 18% of hepatic hydrothoraces (HH) are misclassified by light's criteria mostly because both chronicity and diuretic increase LDH & protein

Romero-Candeira S et al. Influence of diuretics on the concentration of proteins and other components of pleural transudates in patients with heart failure. *Am. J. Med.* 2001; 110: 681–6.

- If you suspect CCF use albumin gradient ($s.alb-p.alb > 12\text{g/L}$) will correctly identify 83% of “false” exudates
- for HH use the albumin ratio ($p.alb/s.alb < 0.6$) will correctly identify 78% of the “false” exudates
- Or the protein gradient ($s.pr-p.pr > 31\text{g/L}$) will correctly identify 55% of CCF and 61% of HH

Bielsa et al. Solving the light's criteria misclassification rate of cardiac and hepatic transudates. *Respirology* 2012;17:721

Romero-Candeira S et al. The separation of transudates and exudates with particular reference to the protein gradient. *Curr. Opin. Pulm. Med.* 2004;10:294

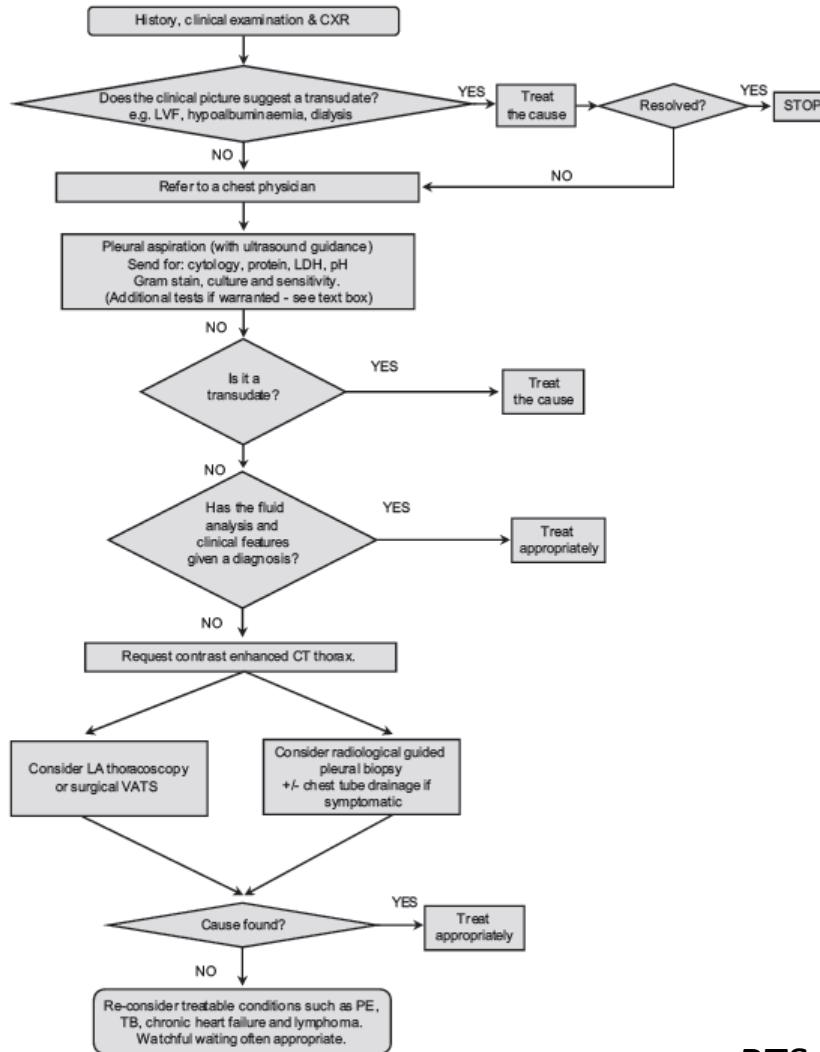
Misclassification of CCF transudates and NT-proBNP

- Is serum NT-proBNP better than albumin gradients and protein gradients?
- Yes but only pleural NT-proBNP>1300pg/ml validated so far.

Porcel et al. Biomarkers of heart failure in pleural fluid. *Respirology* 2009;14:471

- Serum NT-proBNP >1500pg/ml usual cut off in trials
- Evidence for BNP is scarce

BTS 2010 pleural guidelines


Protein/LDH discordance

- You only need 1 of Light's criteria to make an exudate- much of the time the 2 or 3 tests are concordant but...
- If the protein is high and LDH low think of
- 1 .bloody tap

Porcel JM et al. Influence of pleural fluid red blood cell count on the misidentification of transudates. Med. Clin. (Barc.) 2008; 131: 770–2.

- 2. Chylothorax
- 3. Yellow nail syndrome
- If LDH high and protein low think of
- 1. malignancy
- 2. parapneumonic effusions
- 3. PCP
- V high LDH (>1000IU): infection, rheumatoid, malignancy
- V high protein (> 70g/L): multiple myeloma, waldenstroms macroglobulinaemia

Investigation of unilateral pleural effusion

Elusive effusions

- Despite work up approx 5-20% of effusions remain undiagnosed
- Aims

Exclude a treatable cause

Avoid unnecessary interventions

Undiagnosed pleural effusion algorithm

Think of uncommon causes: revisit history, examination, drug history

Exudate or transudate- use light's criteria,

Reconsider thoracoscopy ?LA

PE? d-dimer then CTPA

Abdo pathology? Subphrenic , chronic pancreatitis, ovarian

If clinical suspicion of CCF or HH use albumin or protein gradients

Tests: serum HIV, pleural lipids & amylase

High NT-proBNP? Treat for heart failure

Reconsider hepatic hydrothorax even if no ascites

Dialysis? Or Nephrotic syndrome

Test: serum TFTs

If no treatable cause found- watch & wait vs. interval scanning.

Uncommon effusions

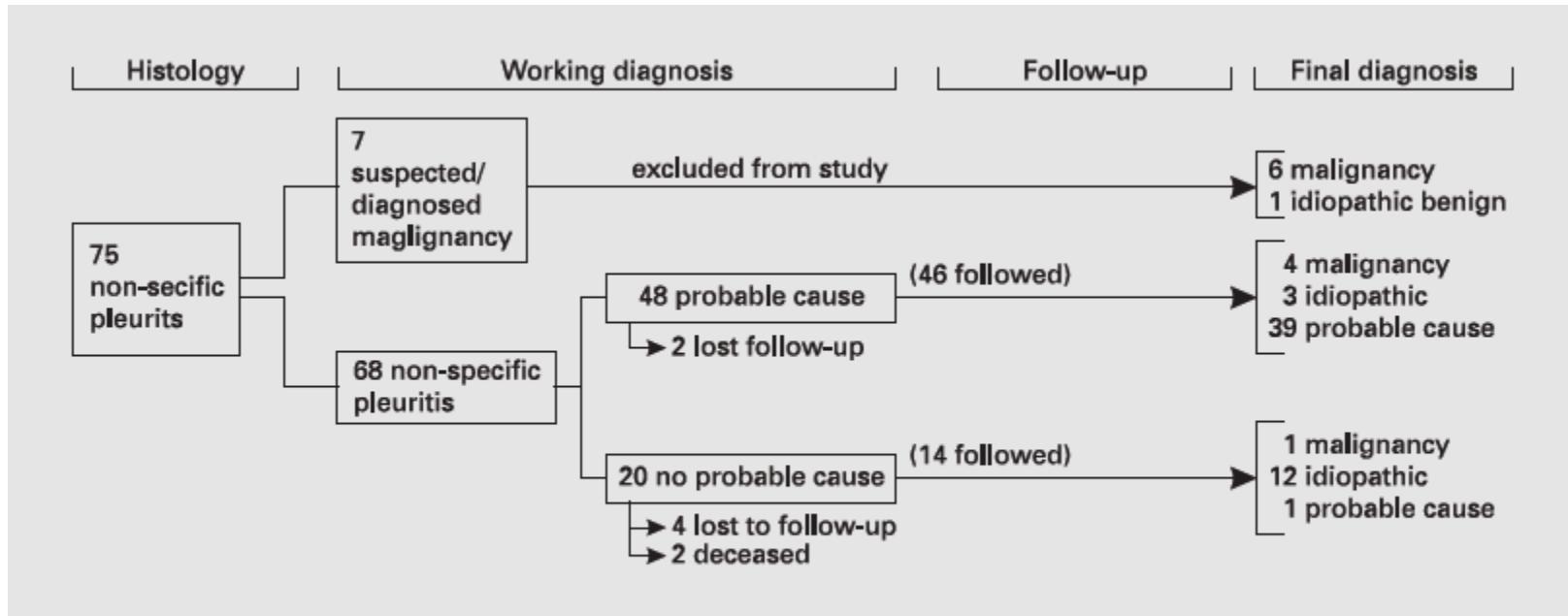
Transudates	Exudates
Trapped lung (after initial inflammatory process)	Yellow nail syndrome
Constrictive pericarditis	Benign asbestos pleural effusion (BAPE)
Urinothorax	Fungal
Peritoneal dialysis	Connective tissue disease
SVC obstruction	Drugs
Mitral stenosis	Meigs
	Lymphoma
	Chylothorax
	Post cardiac injury

Drug induced effusions

10-50 cases on pneumotox

- Nitrofurantoin
- Methotrexate (some eosinophilic)
- Amiodarone
- Bromocriptine
- Docetaxel
- Imatinib
- Clozapine
- Sodium valproate (eosinophilic)
- Isoniazid (ANA +)
- Anti-TNF

Pulmonary embolism as a cause of pleural effusion


- More common than we think- 4th leading cause
- Dyspnoea out of proportion to size of effusion
- 30% associated with effusion
- Only 5% in thoracocentesis series
- Usually unilateral and mostly just blunting of costophrenic angle
- Doesn't usually persist beyond 3 weeks

Marel et al. Incidence of pleural effusion in a well defined region: epidemiological study in central Bohemia. Chest 1993;104:1486

“no cause found”: Idiopathic pleuritis

Venekamp LN et al. Does “idiopathic pleuritis” exist? Natural history of non-specific pleuritis diagnosed after thoracoscopy. *Respiration* 2005;72:74

- 75 patients with a histological diagnosis of non-specific pleuritis.
- Age 63.4 (± 13.3) yrs, Mean follow up 32.9 (± 27.4) months
- 8.3% malignant (21.4% of patients with asbestos exposure compared to 4.3% of those without), 91.7% benign
- True idiopathic in 25% (15/60)

Fig. 1. Evolution of patients with the histological diagnosis of non-specific pleuritis after thoracoscopy.

Truly idiopathic in 25%

Table 2. Probable diagnoses of patients with the histological diagnosis of non-specific pleuritis immediately after thoracoscopy (working diagnosis), and final clinical diagnosis after follow-up

	Working diagnosis	Final clinical diagnosis
Probable cause	48	40
Asbestos pleuritis	12	9
Parapneumonic	10	9
Post-CABG	6	6
Radiotherapy	4	3
Empyema	4	4
Tuberculosis	3	0
Trauma	2	2
MCTD/SLE	2	2
CHF	2	1
Pulmonary embolism	1	1
Amyloidosis	1	1
Drugs (bromocryptine)	1	1
Whipple's disease	0	1
No probable cause (idiopathic):	20	15
Malignancy		5
Lung carcinoma		3
Mesothelioma		2
Lost to follow-up or died		8
Total	68	68

CABG = Coronary artery bypass graft; MCTD/SLE = mixed connective tissue disease/systemic lupus erythematosus; CHF = chronic heart failure.

- 2 cases of BAPE ultimately mesothelioma
- 3 cases of TB- lymphocytic exudate, +TST, contact- no clinical benefit seen
- Radiotherapy ?

Table 3. Recurrence of effusions in 10 patients with non-specific pleural effusions

Working diagnosis	Time to recurrence months	n
No probable cause	38, 42, 72	3
Amyloidosis	3	1
MCTD/SLE	11	1
Parapneumonic	3	1
Radiotherapy	2 ¹ , 7	2
Post-CABG	32, 45	2

¹ Patient with a second recurrence after 3 years, due to pulmonary embolism.

Summary

- Correct interpretation of pleural fluid analysis and a systematic approach to undetermined effusions enables diagnosis in most cases
- Most undiagnosed effusions turn out to be benign and self-limiting

IPC practical

- <http://vimeopro.com/user26937648/rocketvideozone/video/91925239>